

Fiber Reinforced Plastic materials

"Designing a lighter future with Composites"

Fraunhofer IFAM Dipl.-Ing. Stefan Simon

1

Agenda

- Material
- Typical material properties
- Manufacturing processes
- Typical applications

Material Composite: minimum two components

IFAM Fraunhofer ©

Material Why FRP?

- Weight saving
- High strength and stiffness with simultaneously very low density
- Freedom of shape/design
- Good resistance to corrosion
- Low thermal conductivity
- High specific energy absorption
- Low coefficient of thermal expansion

Material Components

- FRPs consist of:
 - Reinforcing fibers
 - Plastic matrix

IFAM Fraunhofer ©

Material

Functions and properties of the components

Fibers

- Force absorption
- Reinforcement

Material

Why fibers as reinforcement?

- Size effect
 - Defects weaken the material
 - When a fiber is drawn from the cube, the defects become smaller and the regions without defects become larger

 The thinner the fibers, the higher their strength.

IFAM Fraunhofer ©

Material

Functions and properties of the components

- Plastic matrix
 - Fiber positioning and support
 - Force transfer between fibers
 - Fiber protection

Unsaturated polyester: **HIGH SHRINKAGE**

Epoxy resins: LOW SHRINKAGE

Material Functions and properties of the components

SIZING!!

Material Fiber architectures

Semi-finished products

Random mats of chopped fibers

Unidirectional (UD)

Parameters

Textile fiber <u>patterns</u> (weaving, knitting, braiding, etc.)

Different drapability and deformation resistance

FRP properties Mechanical properties

From a single layer to a laminate

- Symmetric
- Orthotropic

Individual layer (lamina)

Stacking of multiple layers (laminate)

FRP properties Mechanical properties

- Are FRPs homogenous?
 - microscopically not homogenous

Ageing

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation

Design Philosophy: weight, recycling, manufacturing process...

Construction methods

Manufacturing methods According to matrix and fiber types

Manufacturing methods Performance vs. Series size

Manufacturing performance

Manufacturing methods Error tolerances vs. Tooling costs

Manufacturing tooling costs and tool tolerances

Manufacturing methods Costs

Only tooling costs?...

Manufacturing methods Selection

- To keep in mind:
 - Fiber type
 - Fiber length
 - Matrix type
 - Pot life
 - Cycle time
 - Performance
 - Fiber volume content
 - All costs!

19

Fraunhofer IFAM Dipl.-Ing. Stefan Simon E-Mail: stefan.simon@ifam.fraunhofer.de Tel.: +49 421 5665 456 Fraunhofer IFAM Dr.-Ing. Eric Hernandez Edo E-Mail: eric.hernandez.edo@ifam.fraunhofer.de Tel.: +49 421 5665 484

KULeuven - Dept. of Materials Engineering Katleen Vallons Katleen.vallons@kuleuven.be Tel: +32 16 37 34 58

Ghent University Dr. Geert Luyckx E-Mail: Ilse.Christiaens@ugent.be Tel.: +32 486 95 32 04

Unibersitatea Mondragón Dr. Modesto Mateos E-Mail: mmateos@mondragon.edu Tel.: +(34) 943 794 700

THANK YOU FOR YOUR ATTENTION!

